Halo clustering with f_{NL} , g_{NL} and τ_{NL}

Kendrick Smith (Princeton) Michigan, May 2011

Smith & LoVerde, 1010.0055 LoVerde & Smith, 1102.1439 Smith, Ferraro & LoVerde, to appear

Generalized local non-Gaussianity

Primordial non-Gaussianity defined by:

 $\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{NL}(\Phi_G(\mathbf{x})^2 - \langle \Phi_G^2 \rangle) + g_{NL}(\Phi_G(\mathbf{x})^3 - 3\langle \Phi_G^2 \rangle \Phi_G(\mathbf{x}))$

Possible mechanisms:

- curvaton scenario (spectator field during inflation subsequently dominates energy density)
- models with variable inflaton decay rate
- models with modulated reheating
- multifield ekpyrotic models (e.g. "New Ekpyrosis")

Generalization: f_{NL} -type model in which amplitude of 3-point function (f_{NL}) and amplitude of 4-point function (τ_{NL}) are independent parameters

[Normalization is defined so that "standard" f_{NL} cosmology corresponds to $\tau_{NL} = \left(\frac{6}{5}f_{NL}\right)$]

Generalized local non-Gaussianity

Simple model in which $\tau_{NL} \neq \left(\frac{6}{5}f_{NL}\right)^2$:

(Tseliakhovich & Hirata 2010)

Initial potential is linear combination of two fields: $\Phi = (1 - \alpha^2)^{1/2} \Phi_i + \alpha \Phi_c$

where Φ_i is Gaussian and Φ_c has f_{NL} -type non-Gaussianity $(\Phi_c = \Phi_G + f_{NL}^c (\Phi_G^2 - \langle \Phi_G^2 \rangle))$

$$\left[\text{where } \alpha = \left(\frac{\tau_{NL}}{(6f_{NL}/5)^2}\right)^{-1/2}, \quad f_{NL}^c = \frac{f_{NL}}{\alpha^3}\right]$$

Scope of talk:

- Study halo clustering in non-Gaussian N-body simulations with parameter space $\{f_{NL}, g_{NL}, \tau_{NL}\}$
- Can also study mass function (companion talk by Marilena LoVerde)

Local non-Gaussianity: halo clustering

Dalal et al (2007): extra halo clustering on large scales in an f_{NL} cosmology

 f_{NL} cosmology: well-understood (both theoretically and in simulation)

 g_{NL} cosmology:

Desjacques & Seljak (2010): analytic predictions for large-scale bias do not match simulations (?!)

τ_{NL} cosmology:

Tseliakhovich & Hirata (2010): analytic prediction calculated, not compared to simulations

Start with *linear* density field $\delta_{\text{lin}}(\mathbf{x}, z)$

Apply tophat smoothing on mass scale M to obtain smoothed linear density $\delta_M(\mathbf{x}, z)$

Apply threshold: (halos of mass $\geq M$) \Leftrightarrow (regions where $\delta_M(\mathbf{x}, z) \geq \delta_c$)

 $\delta_c = 1.68$ motivated by analytic spherical collapse model $\delta_c = 1.42$ gives better agreement with N-body simulations

$$n_h = \begin{cases} \rho_m / M & \text{if } \delta_M(\mathbf{x}, z) \ge \delta_c \\ 0 & \text{if } \delta_M(\mathbf{x}, z) < \delta_c \end{cases}$$

[N.B.: This description omits some ingredients:

Lagrangian to Eulerian mapping
 Poisson noise]

Large-scale halo bias: Gaussian case

Barrier crossing model: (halos of mass $\geq M$) \Leftrightarrow (regions where $\delta_M \geq \delta_c$)

How is halo abundance affected by the presence of a long-wavelength overdensity $\delta_l(x)$?

 δ_{c} Local halo overdensity $\delta_h \approx b_0 \delta_l$ (where $b_0 = \frac{\partial \log n}{\partial \delta_l}$) Define halo bias $b(k) = \frac{P_{mh}(k)}{P_{mm}(k)}$ $b(k) \rightarrow b_0$ (as $k \rightarrow 0$) ("weak" form of prediction) $b_0 = \frac{\partial \log n}{\partial \delta_l}$ ("strong" prediction)

Long-wavelength mode contributes to barrier crossing in two ways:

1) Contributes to the density fluctuation (as in a Gaussian cosmology)

2) Modulates "local σ_8 " (new non-Gaussian effect, proportional to Φ_l rather than δ_l)

Large-scale bias: f_{NL} cosmology

Local halo overdensity contains two terms, corresponding to Gaussian + non-Gaussian contributions:

$$\delta_h \approx b_0 \delta_l + f_{NL} b_1 \Phi_l \quad \left(b_0 = \frac{\partial \log n}{\partial \delta_l}, \ b_1 = 2 \frac{\partial \log n}{\partial \log \sigma_8} \right)$$

Halo bias $b(k) \rightarrow b_0 + f_{NL} \frac{b_1}{\alpha(k)}$ (as $k \rightarrow 0$) ("weak" prediction) $b_1 = 2\delta_c(b_0 - 1)$ ("strong" prediction, assumes universal mass fn)

Large-scale bias: τ_{NL} cosmology

 $\Phi = (1 - \alpha^2)^{1/2} \Phi_i + \alpha \Phi_c$

Contribution to barrier crossing due to long-wavelength mode:

- 1) Density fluctuation: proportional to total density $\delta_l^{(\text{tot})}$ 2) σ_8 modulation: proportional to curvaton part of potential $\Phi_l^{(c)}$

Gaussian clustering term follows the large-scale matter distribution $\delta_i^{(tot)}$ Non-Gaussian term is not 100% correlated

- (bias inferred from P_{hh}) \neq (bias inferred from P_{mh})
- Halos and matter are not 100% correlated
- Halos of different masses are not 100% correlated with each other

Large-scale bias: g_{NL} cosmology

 $\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + g_{NL}(\Phi_G(\mathbf{x})^3 - 3\langle \Phi_G^2 \rangle \Phi_G(\mathbf{x}))$

 $\Phi = \Phi_l + \Phi_s + g_{NL}(\Phi_l^3 + \Phi_s^3 - 3\langle \Phi_l^2 \rangle \Phi_l - 3\langle \Phi_s^2 \rangle \Phi_s) + 3g_{NL}\Phi_l(\Phi_s^2 - \langle \Phi_s^2 \rangle) + 3g_{NL}(\Phi_l^2 - \langle \Phi_l^2 \rangle)\Phi_s$

Long-wavelength mode contributes to barrier crossing in three ways:

- 1) Contributes to the density fluctuation (proportional to δ_l)
- 2) Modulates "local f_{NL} " (proportional to Φ_l)
- 3) Modulates "local σ_8 " (proportional to Φ_1^2)

Large-scale bias: g_{NL} cosmology

Neglecting third contribution, local halo overdensity consists of two terms:

$$\delta_h \approx b_0 \delta_l + g_{NL} b_2 \Phi_l$$

Halo bias
$$b(k) \rightarrow b_0 + g_{NL} \frac{b_2}{\alpha(k)}$$
 (as $k \rightarrow 0$) (weak prediction)
 $b_2 = 3\left(\frac{\partial \log n}{\partial f_{NL}}\right)$ (stronger)
 $= \frac{\kappa_3(M)}{2}H_3\left(\frac{\delta_c}{\sigma(M)}\right) - \frac{d\kappa_3/dM}{d\sigma/dM}\frac{\sigma(M)^2}{2\delta_c}H_2\left(\frac{\delta_c}{\sigma(M)}\right)$ (strongest)

N-body simulations

Collisionless N-body simulations, GADGET-2 TreePM code.

Unless otherwise specified:

- periodic boundary conditions, $L_{\rm box} = 1600 \ h^{-1} \ {\rm Mpc}$
- particle count $N = 1024^3$
- force softening length $R_s = 0.05 \left(L_{\rm box} / N^{1/3} \right)$
- initial conditions simulated at $z_{ini} = 100$ using Zeldovich approximation
- FOF halo finder, link length $L_{\rm FOF} = 0.2 \left(L_{\rm box} / N^{1/3} \right)$

Halo bias: f_{NL} simulations

Prediction from barrier crossing model:

$$b(k) \to b_0 + f_{NL} \frac{b_1}{\alpha(k)}$$
 $b_1 = 2\delta_c(b_0 - 1)$

Agreement with simulations: perfect!

Stochastic halo bias: τ_{NL} simulations

Define stochasticity r(k) by:

$$r(k) = \frac{P_{hh}(k) - 1/n}{P_{mm}(k)} - \left(\frac{P_{mh}(k)}{P_{mm}(k)}\right)^2$$

Prediction from barrier crossing model:

$$r(k) = \left[\left(\frac{5}{6}\right)^2 \tau_{NL} - f_{NL}^2 \right] \frac{b_1^2}{\alpha(k)^2}$$

Results from simulations:

- significant stochasticity in Gaussian cosmology
- no change to stochasticity in f_{NL} cosmology
- boosted stochasticity in τ_{NL} cosmology

Smith & Loverde (2010)

Stochastic halo bias: τ_{NL} simulations

	Mass range $(h^{-1}M_{\odot})$	$f_{NL} = 500$	$f_{NL} = 250$	$f_{NL} = -250$	$f_{NL} = -500$
z=2	$M>1.15\times10^{13}$	0.98 ± 0.07	0.88 ± 0.08	0.62 ± 0.06	0.42 ± 0.03
z = 1	$1.15 \times 10^{13} < M < 2.32 \times 10^{13}$	0.79 ± 0.09	0.83 ± 0.12	0.67 ± 0.09	0.46 ± 0.04
	$M>2.32\times 10^{13}$	0.83 ± 0.07	0.70 ± 0.08	0.66 ± 0.07	0.51 ± 0.04
z = 0.5	$1.15 \times 10^{13} < M < 2.32 \times 10^{13}$	1.01 ± 0.18	0.92 ± 0.29	0.45 ± 0.19	0.57 ± 0.10
	$2.32 \times 10^{13} < M < 4.66 \times 10^{13}$	0.80 ± 0.15	0.58 ± 0.22	0.73 ± 0.19	0.48 ± 0.08
	$M>4.66\times 10^{13}$	0.81 ± 0.09	0.79 ± 0.12	0.80 ± 0.10	0.51 ± 0.05
z = 0	$1.15 \times 10^{13} < M < 2.32 \times 10^{13}$	1.37 ± 0.80	1.06 ± 1.12	1.00 ± 1.41	0.90 ± 0.51
	$2.32 \times 10^{13} < M < 4.66 \times 10^{13}$	1.35 ± 0.44	1.57 ± 0.77	0.82 ± 0.59	0.58 ± 0.25
	$4.66 \times 10^{13} < M < 1.02 \times 10^{14}$	0.71 ± 0.26	0.90 ± 0.49	1.12 ± 0.41	0.63 ± 0.17
	$M>1.02\times 10^{14}$	0.79 ± 0.13	0.93 ± 0.21	0.73 ± 0.15	0.53 ± 0.07

Table 3: Values of the q-parameter, defined in Eq. (35), obtained from N-body simulations for various values of f_{NL} , redshift, and mass bin. (We take $\xi = 1$ throughout)

Halo bias: g_{NL} simulations

Predictions from barrier crossing model:

$$b(k) \rightarrow b_{0} + g_{NL} \frac{b_{2}}{\alpha(k)}$$

$$b_{2} = 3\left(\frac{\partial \log n}{\partial f_{NL}}\right)$$

$$= \frac{\kappa_{3}(M)}{2}H_{3}\left(\frac{\delta_{c}}{\sigma(M)}\right) - \frac{d\kappa_{3}/dM}{d\sigma/dM}\frac{\sigma(M)^{2}}{2\delta_{c}}H_{2}\left(\frac{\delta_{c}}{\sigma(M)}\right)$$
Let's test this prediction in several steps.....
First: is $b(k) = b_{0} + g_{NL}\frac{b_{2}}{\alpha(k)}$ a good g
fit, treating b_{0}, b_{2} as free parameters?
Answer: yes!
$$M = \frac{M_{2} + M_{2}}{M_{2} + M_{2}} \frac{1}{M_{2} + M_{2} + M_{2} + M_{2}} \frac{1}{M_{2} + M_{2} + M_{2} + M_{2}} \frac{1}{M_{2} + M_{2} + M_{2}$$

Halo bias: g_{NL} simulations

Second: general relation between g_{NL} dependence of bias and f_{NL} dependence of mass function

$$b_2 = 3\left(\frac{\partial \log n}{\partial f_{NL}}\right)$$

Agreement with simulations: perfect!

Halo bias: g_{NL} simulations

Third: barrier crossing model prediction for b_2 :

$$\frac{\kappa_3(M)}{6}H_3\left(\frac{\delta_c}{\sigma(M)}\right) - \frac{d\kappa_3/dM}{d\sigma/dM}\frac{\sigma(M)^2}{6\delta_c}H_2\left(\frac{\delta_c}{\sigma(M)}\right)$$

Works well for large halo mass (most relevant for observations); breaks down at low mass

Conclusions

- Analytic models (peak-background split, barrier crossing) can qualitatively describe halo clustering for a generalized local non-Gaussianity with parameters $\{f_{NL}, g_{NL}, \tau_{NL}\}$
- Minor puzzle: barrier crossing prediction for g_{NL} bias breaks down at low halo mass
- More significant puzzle: understanding amplitude of stochasticity in τ_{NL} cosmology